Official International Website - Explore the World of Louis Vuitton, read our latest News, discover our Women and Men Collections
Enter the world of CHANEL and discover the latest in Fashion & Accessories, Eyewear, Fragrance & Beauty, Fine Jewelry & Watches.
Guccio Gucci S.p.A., doing business as Gucci, is an Italian luxury fashion house based in Florence, Italy. Its product lines include handbags, ready-to-wear, footwear, accessories, and home decoration; and it licenses its name and branding to Coty for fragrance and cosmetics under the name Gucci Beauty.
Hermès International S.A. is a French luxury design house established on June 15th 1837. It specializes in leather goods, lifestyle accessories, home furnishings, perfumery, jewelry, watches and ready-to-wear. Since the 1950s, its logo has been a depiction of a ducal horse-drawn carriage
Christian Dior SE, commonly known as Dior, is a French multinational luxury fashion house controlled and chaired by French businessman Bernard Arnault, who also heads LVMH. Dior holds 42.36% shares and 59.01% of voting rights within LVMH
# lets import libraries
from googleapiclient.discovery import build
import pandas as pd
import seaborn as sn
# Function to get channel statistics
api_key = 'AIzaSyB24Kop04L1GlTgRCm1XtQ4KB2a4gaBOwA'
Louis_Vuitton_channel_id = ['UC5q0PIKGr2lGOsiT14AlEYg' # Louis Vuitton
]
youtube = build('youtube','v3',developerKey = api_key)
from googleapiclient.errors import HttpError
def get_channel_stats(youtube, Louis_Vuitton_channel_id):
all_data = []
try:
request = youtube.channels().list(
part='snippet,contentDetails,statistics',
id=','.join(Louis_Vuitton_channel_id)
)
response = request.execute()
for item in response.get('items', []):
snippet = item.get('snippet', {})
statistics = item.get('statistics', {})
data = {
'Channel_name': snippet.get('title', ''),
'Subscribers': statistics.get('subscriberCount', ''),
'Views': statistics.get('viewCount', ''),
'Total_videos': statistics.get('videoCount', '')
}
all_data.append(data)
except HttpError as e:
print(f"HTTP error occurred: {e}")
print(f"Request URL: {e.resp.request.url}")
print(f"Request body: {e.resp.request.body}")
return all_data
get_channel_stats(youtube,Louis_Vuitton_channel_id)
[{'Channel_name': 'Louis Vuitton', 'Subscribers': '5240000', 'Views': '421216384', 'Total_videos': '476'}]
channel_statistics = get_channel_stats(youtube, Louis_Vuitton_channel_id)
Louis_Vuitton_channel_data =pd.DataFrame(channel_statistics)
Louis_Vuitton_channel_data
Channel_name | Subscribers | Views | Total_videos | |
---|---|---|---|---|
0 | Louis Vuitton | 5240000 | 421216384 | 476 |
# Function to get channel statistics
api_key = 'AIzaSyB24Kop04L1GlTgRCm1XtQ4KB2a4gaBOwA'
Chanel_channel_id = ['UCclHSnngVTZK7LEOQAzcg1w' # Chanel
]
youtube = build('youtube','v3',developerKey = api_key)
from googleapiclient.errors import HttpError
def get_channel_stats(youtube, Chanel_channel_id):
all_data = []
try:
request = youtube.channels().list(
part='snippet,contentDetails,statistics',
id=','.join(Chanel_channel_id)
)
response = request.execute()
for item in response.get('items', []):
snippet = item.get('snippet', {})
statistics = item.get('statistics', {})
data = {
'Channel_name': snippet.get('title', ''),
'Subscribers': statistics.get('subscriberCount', ''),
'Views': statistics.get('viewCount', ''),
'Total_videos': statistics.get('videoCount', '')
}
all_data.append(data)
except HttpError as e:
print(f"HTTP error occurred: {e}")
print(f"Request URL: {e.resp.request.url}")
print(f"Request body: {e.resp.request.body}")
return all_data
get_channel_stats(youtube,Chanel_channel_id)
[{'Channel_name': 'CHANEL', 'Subscribers': '2490000', 'Views': '729855048', 'Total_videos': '1487'}]
channel_statistics = get_channel_stats(youtube, Chanel_channel_id)
Chanel_channel_data =pd.DataFrame(channel_statistics)
Chanel_channel_data
Channel_name | Subscribers | Views | Total_videos | |
---|---|---|---|---|
0 | CHANEL | 2490000 | 729855048 | 1487 |
# Function to get channel statistics
api_key = 'AIzaSyB24Kop04L1GlTgRCm1XtQ4KB2a4gaBOwA'
Gucci_channel_id = ['UCo6fjlKg6GuCmEMeqYbGJng' # Gucci
]
youtube = build('youtube','v3',developerKey = api_key)
from googleapiclient.errors import HttpError
def get_channel_stats(youtube, Gucci_channel_id):
all_data = []
try:
request = youtube.channels().list(
part='snippet,contentDetails,statistics',
id=','.join(Gucci_channel_id)
)
response = request.execute()
for item in response.get('items', []):
snippet = item.get('snippet', {})
statistics = item.get('statistics', {})
data = {
'Channel_name': snippet.get('title', ''),
'Subscribers': statistics.get('subscriberCount', ''),
'Views': statistics.get('viewCount', ''),
'Total_videos': statistics.get('videoCount', '')
}
all_data.append(data)
except HttpError as e:
print(f"HTTP error occurred: {e}")
print(f"Request URL: {e.resp.request.url}")
print(f"Request body: {e.resp.request.body}")
return all_data
get_channel_stats(youtube,Gucci_channel_id)
[{'Channel_name': 'GUCCI', 'Subscribers': '1160000', 'Views': '304951309', 'Total_videos': '900'}]
channel_statistics = get_channel_stats(youtube, Gucci_channel_id)
SAMSUNG_channel_data =pd.DataFrame(channel_statistics)
SAMSUNG_channel_data
Channel_name | Subscribers | Views | Total_videos | |
---|---|---|---|---|
0 | GUCCI | 1160000 | 304951309 | 900 |
# Function to get channel statistics
api_key = 'AIzaSyB24Kop04L1GlTgRCm1XtQ4KB2a4gaBOwA'
Hermès_channel_id = ['UCmFOnqrNg-YHLXfdB3GexBg' # Hermès
]
youtube = build('youtube','v3',developerKey = api_key)
from googleapiclient.errors import HttpError
def get_channel_stats(youtube, Hermès_channel_id):
all_data = []
try:
request = youtube.channels().list(
part='snippet,contentDetails,statistics',
id=','.join(Hermès_channel_id)
)
response = request.execute()
for item in response.get('items', []):
snippet = item.get('snippet', {})
statistics = item.get('statistics', {})
data = {
'Channel_name': snippet.get('title', ''),
'Subscribers': statistics.get('subscriberCount', ''),
'Views': statistics.get('viewCount', ''),
'Total_videos': statistics.get('videoCount', '')
}
all_data.append(data)
except HttpError as e:
print(f"HTTP error occurred: {e}")
print(f"Request URL: {e.resp.request.url}")
print(f"Request body: {e.resp.request.body}")
return all_data
get_channel_stats(youtube,Hermès_channel_id)
[{'Channel_name': 'Hermès', 'Subscribers': '332000', 'Views': '16942450', 'Total_videos': '224'}]
channel_statistics = get_channel_stats(youtube, Hermès_channel_id)
Hermès_channel_data =pd.DataFrame(channel_statistics)
Hermès_channel_data
Channel_name | Subscribers | Views | Total_videos | |
---|---|---|---|---|
0 | Hermès | 332000 | 16942450 | 224 |
# Function to get channel statistics
api_key = 'AIzaSyB24Kop04L1GlTgRCm1XtQ4KB2a4gaBOwA'
Christian_Dior_channel_id = ['UCWwgaK7x0_FR1goeSRazfsQ' # Christian_Dior
]
youtube = build('youtube','v3',developerKey = api_key)
from googleapiclient.errors import HttpError
def get_channel_stats(youtube, Christian_Dior_channel):
all_data = []
try:
request = youtube.channels().list(
part='snippet,contentDetails,statistics',
id=','.join(Christian_Dior_channel)
)
response = request.execute()
for item in response.get('items', []):
snippet = item.get('snippet', {})
statistics = item.get('statistics', {})
data = {
'Channel_name': snippet.get('title', ''),
'Subscribers': statistics.get('subscriberCount', ''),
'Views': statistics.get('viewCount', ''),
'Total_videos': statistics.get('videoCount', '')
}
all_data.append(data)
except HttpError as e:
print(f"HTTP error occurred: {e}")
print(f"Request URL: {e.resp.request.url}")
print(f"Request body: {e.resp.request.body}")
return all_data
get_channel_stats(youtube,Christian_Dior_channel_id)
[{'Channel_name': 'Samsung', 'Subscribers': '6710000', 'Views': '1811453473', 'Total_videos': '2129'}]
channel_statistics = get_channel_stats(youtube, Christian_Dior_channel_id)
Christian_Dior_channel_data =pd.DataFrame(channel_statistics)
Christian_Dior_channel_data
Channel_name | Subscribers | Views | Total_videos | |
---|---|---|---|---|
0 | Hermès | 332000 | 16942450 | 224 |
# Lets combine the data frames
# Combine DataFrames using concat
combined_Clothing_brands_channels_df = pd.concat([Louis_Vuitton_channel_data ,
Chanel_channel_data ,
SAMSUNG_channel_data ,
Hermès_channel_data ,
Christian_Dior_channel_data,
], ignore_index=True)
# Display the result
print(combined_Clothing_brands_channels_df)
Channel_name Subscribers Views Total_videos 0 Louis Vuitton 5240000 421216384 476 1 CHANEL 2490000 729855048 1487 2 GUCCI 1160000 304951309 900 3 Hermès 332000 16942450 224 4 Hermès 332000 16942450 224
# # lets have a look at the datatypes
combined_Clothing_brands_channels_df.info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 5 entries, 0 to 4 Data columns (total 4 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Channel_name 5 non-null object 1 Subscribers 5 non-null object 2 Views 5 non-null object 3 Total_videos 5 non-null object dtypes: object(4) memory usage: 292.0+ bytes
# lets change the datatypes to perform visualisations
combined_Clothing_brands_channels_df['Subscribers'] = pd.to_numeric(combined_Clothing_brands_channels_df['Subscribers'])
combined_Clothing_brands_channels_df['Views'] = pd.to_numeric(combined_Clothing_brands_channels_df['Views'])
combined_Clothing_brands_channels_df['Total_videos'] = pd.to_numeric(combined_Clothing_brands_channels_df['Total_videos'])
# letsconirm if the datatypes has changed
combined_Clothing_brands_channels_df.info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 5 entries, 0 to 4 Data columns (total 4 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Channel_name 5 non-null object 1 Subscribers 5 non-null int64 2 Views 5 non-null int64 3 Total_videos 5 non-null int64 dtypes: int64(3), object(1) memory usage: 292.0+ bytes
combined_Clothing_brands_channels_df
Channel_name | Subscribers | Views | Total_videos | |
---|---|---|---|---|
0 | Louis Vuitton | 5240000 | 421216384 | 476 |
1 | CHANEL | 2490000 | 729855048 | 1487 |
2 | GUCCI | 1160000 | 304951309 | 900 |
3 | Hermès | 332000 | 16942450 | 224 |
4 | Hermès | 332000 | 16942450 | 224 |
import pandas as pd
import matplotlib.pyplot as plt
# Sort the DataFrame by 'Subscribers' in descending order
combined_Clothing_brands_channels_df_subscribers_sorted = combined_Clothing_brands_channels_df.sort_values(by='Subscribers', ascending=False)
# Shorten channel names
combined_Clothing_brands_channels_df_subscribers_sorted['Channel_name'] = combined_Clothing_brands_channels_df_subscribers_sorted['Channel_name'].apply(lambda x: x[:8])
# Plotting Subscribers in descending order
fig, axes = plt.subplots(nrows=3, ncols=1, figsize=(10, 15))
axes[0].bar(combined_Clothing_brands_channels_df_subscribers_sorted['Channel_name'], combined_Clothing_brands_channels_df_subscribers_sorted['Subscribers'], color='blue')
axes[0].set_title('Subscribers')
# Sort the DataFrame by 'Views' in descending order
combined_Clothing_brands_channels_df_views_sorted = combined_Clothing_brands_channels_df.sort_values(by='Views', ascending=False)
# Shorten channel names
combined_Clothing_brands_channels_df_views_sorted['Channel_name'] = combined_Clothing_brands_channels_df_views_sorted['Channel_name'].apply(lambda x: x[:8])
# Plotting Views in descending order
axes[1].bar(combined_Clothing_brands_channels_df_views_sorted['Channel_name'],combined_Clothing_brands_channels_df_views_sorted['Views'], color='brown')
axes[1].set_title('Views')
# Sort the DataFrame by 'Total_videos' in descending order
combined_Clothing_brands_channels_df_total_videos_sorted =combined_Clothing_brands_channels_df.sort_values(by='Total_videos', ascending=False)
# Shorten channel names
combined_Clothing_brands_channels_df_total_videos_sorted['Channel_name'] = combined_Clothing_brands_channels_df_total_videos_sorted['Channel_name'].apply(lambda x: x[:8])
# Plotting Total Videos in descending order
axes[2].bar(combined_Clothing_brands_channels_df_total_videos_sorted['Channel_name'], combined_Clothing_brands_channels_df_total_videos_sorted['Total_videos'], color='orange')
axes[2].set_title('Total Videos')
# Adjust layout for better visibility
plt.tight_layout()
# Show the plot
plt.show()